Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital Chlamydia muridarum infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production.
نویسندگان
چکیده
There is currently no licensed vaccine against Chlamydia trachomatis, the leading cause of sexually transmitted bacterial disease worldwide. Conventional vaccination attempts using surface-exposed chlamydial antigens have achieved only partial success. We have employed a novel vaccination strategy using a secreted protein, chlamydial protease-like activity factor (CPAF), which has been shown to degrade host major histocompatibility complex transcription factors and keratin-8 and therefore may allow immune evasion and establishment of a productive infection. Intranasal immunization using recombinant CPAF (rCPAF) plus interleukin-12 (IL-12) (rCPAF+IL-12 immunization) was used to assess the protective immunity against genital Chlamydia muridarum infection in BALB/c mice. rCPAF+IL-12 immunization induced robust gamma interferon (IFN-gamma) production and minimal IL-4 production by splenocytes upon in vitro recall with rCPAF. The total and immunoglobulin G2a (IgG2a) anti-rCPAF antibody levels in serum were significantly elevated after rCPAF+IL-12 vaccination, as were the total antibody, IgG2a, and IgA levels in bronchoalveolar lavage and vaginal fluids when the animals were compared to animals that received rCPAF alone. rCPAF+IL-12-vaccinated mice displayed significantly reduced bacterial shedding upon chlamydial challenge and accelerated resolution of infection compared to mock-immunized (phosphate-buffered saline) animals. Moreover, rCPAF+IL-12-immunized animals exhibited protection against pathological consequences of chlamydial infection, including the development of hydrosalpinx and oviduct dilatation. This vaccination regimen also reduced the development of fibrosis and the influx of neutrophils into the upper genital tract when the animals were compared to mock-immunized (phosphate-buffered saline) animals after bacterial challenge. rCPAF+IL-12-mediated resolution of the bacterial infection and protection against Chlamydia-induced inflammatory disease were highly dependent on endogenous IFN-gamma production. Together, these results demonstrate that secreted chlamydial antigens may be novel vaccine candidates to induce protective immunity.
منابع مشابه
Antigen-specific CD4+ T cells produce sufficient IFN-gamma to mediate robust protective immunity against genital Chlamydia muridarum infection.
Chlamydia has been shown to evade host-specific IFN-gamma-mediated bacterial killing; however, IFN-gamma-deficient mice exhibit suboptimal late phase vaginal Chlamydia muridarum clearance, greater dissemination, and oviduct pathology. These findings introduce constraints in understanding results from murine chlamydial vaccination studies in context of potential implications to humans. In this s...
متن کاملChlamydial protease-like activity factor induces protective immunity against genital chlamydial infection in transgenic mice that express the human HLA-DR4 allele.
There is no licensed vaccine available against Chlamydia trachomatis, the leading cause of bacterial sexually transmitted disease. We have found that intranasal immunization with recombinant chlamydial protease-like activity factor (CPAF) induces CD4(+) T-cell- and gamma interferon (IFN-gamma)-dependent protective immunity against murine genital chlamydial infection, thus making CPAF a viable v...
متن کاملInduction of cross-serovar protection against genital chlamydial infection by a targeted multisubunit vaccination approach.
An important consideration for antichlamydial vaccine development is the induction of cross-serovar protection, since multiple serovars (D to L) of Chlamydia trachomatis cause genital infections. We have shown previously that vaccination with C. trachomatis-derived recombinant chlamydial protease-like activity factor (rCPAF) induced significant earlier resolution of Chlamydia muridarum infectio...
متن کاملThe Duration of Chlamydia muridarum Genital Tract Infection and Associated Chronic Pathological Changes Are Reduced in IL-17 Knockout Mice but Protection Is Not Increased Further by Immunization
IL-17 is believed to be important for protection against extracellular pathogens, where clearance is dependent on neutrophil recruitment and local activation of epithelial cell defences. However, the role of IL-17 in protection against intracellular pathogens such as Chlamydia is less clear. We have compared (i) the course of natural genital tract C. muridarum infection, (ii) the development of...
متن کاملProtection against Chlamydia Promoted by a Subunit Vaccine (CTH1) Compared with a Primary Intranasal Infection in a Mouse Genital Challenge Model
BACKGROUND The chlamydial proteins CT443 (OmcB) and CT521 (rl16) have previously been identified as human B and/or T cell targets during a chlamydial infection in humans. Here we compare the protective effector mechanism promoted by a fusion protein composed of CT521 and CT443 (CTH1) with a primary intranasal Chlamydia muridarum infection known to provide high levels of protection against a gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 75 2 شماره
صفحات -
تاریخ انتشار 2007